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Stochastic Model for Dielectric Breakdown 

L. Pietronero 1'2 and H. J, Wiesmann 1 

We discuss a model for the development of discharge patterns in dielectric 
breakdown based on the Laplace equation associated with a probability field. 
The model gives rise to random fractals with well-defined Hausdorff dimensions. 
The relations of this model with the diffusion-limited aggregation are discussed 
in detail. The possibility of application to other stochastic phenomena like 
fracture propagation is proposed. 
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breakdown. 

1. I N T R O D U C T I O N  

The question we would like to discuss is why a lightning bolt does not 
proceed in a straight line or, more generally, whether it is possible to identify 
the mechanisms that give rise to its complicated pattern. The behavior of  
atmospheric lightning is of  course complicated by the particular geometry, 
the nonhomogenei ty of  the atmosphere, and the local dielectric properties of 
the air. In order to avoid these complications it is more convenient to look at 
the abundant amount of  experimental data on dielectric breakdown in gases, 
liquids, and solids. ~1-3) 

The phenomenon of  dielectric breakdown frequently occurs by means of 
narrow discharge channels that exhibit a strong tendency to branching into 
complicated stochastic patterns. The global structures of  branched discharges 
often show a close structural similarity within a large class of  discharge 
types but at the moment even a qualitative classification of these structures is 
missing. On one hand there is a tendency for the discharge to grow on the 
points where the electric field is highest. Because of  electrostatic reasons 
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these points are the tips of the branches. On the other hand, if this effect 
would be dominating, the breakdown would just proceed along a straight line 
toward the other electrode. We observe instead a strong tendency to ramify, 
an indication that the process has a stochastic nature instead of a deter- 
ministic one. It is therefore the competition between electrostatic and 
stochastic effect that governs the phenomenon. 

We have recently proposed a model (4~ that provides, in our opinion, the 
simplest nontrivial description of these competing effects. The model is based 
on the idea that the local electric field around a discharge pattern does not 
govern the growth directly but through a stochastic process. This means that 
the pattern does not just grow at the point of maximum local field but that at 
this point the probability of growing is the highest. This changes the process 
from deterministic into stochastic and gives rise to the possibility of 
branching in a statistical sense. The physical reason for this probabilistic 
description of the phenomenon lies in the following fact: the electric field as 
it is calculated in the model is determined by the global structure of the 
discharge pattern. It reflects the quasistatic influence of the pattern on the 
local conditions for its growth. But it does not contain the fluctuations of the 
field and charge densities as they occur in the real dynamical process, 
especially at the tips of the filaments. These fluctuations are the origin of the 
stochastic nature of the process and make branching possible. The relation 
between probability and field reflects therefore the fact that the microscopic 
mechanism of the propagation of the discharge is modulated by its global 
structure. 

It is interesting to note that there are other phenomena that also give 
rise to ramified structures and for which a similar approach may be 
appropriate. This is for example the case for the propagation of fractures in a 
solid medium. (5) Fractures tend to proceed along the points of maximum 
strain but, if an area of weak resistance gets close to a point of medium 
strain, the propagation will rather proceed there in close analogy to the 
dielectric breakdown. The fractures of a broken glass are in fact not too 
dissimilar in their global structure from the shape of electrical discharges. 
We are going to see in the following that the mathematical analogy is 
actually very close: 

In Section 2 we analyze an experiment designed to produce a two- 
dimensional discharge pattern in a gas. Evidence for a fractal structure is 
provided. In Section 3 our stochastic model is described and the resulting 
fractal patterns are briefly discussed. In Section 4 the relation of our model 
to the model of diffusion-limited aggregation is discussed in detail. 
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2. ANALYSIS  OF EXPERIMENTAL D ISCHARGES 

The highly branched patterns observed in dielectric breakdown suggest 
the possibility of fractal structures.(6) Their analysis is often complicated by 
the fact that photos represent two-dimensional projections of three- 
dimensional patterns and that often they refer to a superposition of discharge 
patterns occurring at different times. In order to facilitate the analysis of the 
discharge patterns the optimal situation would be that of a two-dimensional 
radial discharge. This has been recently obtained by Niemeyer and 
Pinnekamp for a leader surface discharge (Lichtenberg figure) in compressed 
SF 6 gas. (v) The experimental parameters were controlled in such a way that 
(i) the voltage drop along the discharge channels is small compared to the 
applied voltage, so that the channels form approximately an equipotential 
structure; (ii)the electric field exhibits cylindrical symmetry and has its 
outer boundary at large distance from the discharge pattern; (iii)the growth 
of a discharge pattern occurs during a well-defined time interval (of order 
1 r during which the channels remain conductive and preserve their 
equipotential behavior. The experiment thus, to a good approximation, 
produces an equipotential channel system growing in a plane with radial 
symmetry from a central point. An example of these figures was reported in 
Fig. 1 of Ref. 4. It should be noted anyhow that the thickness of the branches 
in the photo does not correspond to a real thickness but is due to the amount 
of charge that has flown through that channel. In addition several tiny 
branches disappear in the printed reproduction. To avoid these problems and 
give a realistic view of the discharge pattern we have drawn all the lines 
appearing in the original negative with equal thickness. The resulting picture 
is shown in Fig. la. 

A fractal object is characterized by a noninteger power law between 
"mass" (N) and radius (r): 

N ~ r  ~ (2.1) 

where D is the Hausdorff or fractal dimension. (6) If the system is composed 
by filamentary branches as in our case the number of branches n(r) at a 
distance r is given by the gradient of the mass: 

dN(r)  ~ r(O_ 1) (2.2) 
n(r) dr 

Therefore a simple count of the number of branches at various distances 
provides a measure of (D -- 1). The analysis of Fig. 1 indicates a power law 
with D ~ 1.7. The indetermination is rather large owing to the small size of 
the system. 
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P l a n a r  d i s c h a r g e  in SF 6 gas .  

Th i s  e x p e r i m e n t  c o r r e s p o n d s  t o  an 

e q u i p o t e n t i a l  c h a n n e l  s y s t e m  g r o w i n g  

in a p i a n e  w i t h  r a d i a l  e l e c t r o d e  . 

For  t h i s  s t r u c t u r e  we  e s t i m a t e  

D ~ 1 . 7  

S t o c h a s t i c  m o d e l  w i t h  

~ = 0 , 5  

H a u s d o r f f  d i m e n s i o n  : 

D = 1 . 8 9  + 0 . 0 1  

S t o c h a s t i c  m o d e l  w i t h  

~ - ~  1 .0  

H a u s d o r f f  d i m e n s i o n  : 

D = 1 . 7 5  -I- 0 . 0 2  

( i n  t h i s  c a s e  t h e  g r o w t h  p robab i l i t y  

is p r o p o r t i o n a l  t o  t h e  l o c a l  f i e l d  ) 

S t o c h a s t i c  m o d e l  w i t h  

" r / =  2 . 0  

H a u s d o r f f  d i m e n s i o n  : 

D ~ 1 . 6  

f 

~ 7 " -  

Fig. 1. (a) Channel pattern extracted from the photo of Refi 4. (b, c,d) Structures arising 
from the stochastic model for different values of r/. 
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3. S T O C H A S T I C  M O D E L  

We briefly summarize here the assumptions and the results of the 
stochastic model we have introduced in Ref. 4. The model is defined on a 
lattice and it is based on the following simple rules: 

(a) The discharge pattern is equipotential and connected. 

(b) The probability pj to add the segment j connected to the pattern is 
related to the local electric field Ej. 

As for the relation between P1 and E i we consider a power law depen- 
dence characterized by the exponent r/: 

p i n e y  (3.1) 

The particular relation between probability and local field should be linked 
to microscopic models of dielectric breakdown. (The case r /= 1 corresponds 
to simple proportionality between probability and field.) For more details 
about the model see Ref. 4. 

The above rules imply the solution at each step of the Laplace equation 
with the appropriate boundary conditions defined by the growing 
equipotential pattern. We assume ~ = 0 along the discharge pattern and 

= 1 outside a circle at large enough distance. ~4) The local electric field 
(potential drop) along a segment that links a point of the discharge pattern 
to a nearest-neighbor point that is not yet part of it but which is a candidate 
for the growth, is given by the value of 0 at this point. The probability field 
for the addition of a segment is therefore related to the values of the potential 
in all the points surrounding the already available discharge pattern. (4) To 
determine it, the discrete Laplace equation 

40, ,k  - -  ( O i + , j ,  + Oi-,,k + gii,k+, + Oi,k-,) = 0 (3.2) 

is solved by iterations with the above-specified boundary conditions. These 
rules properly define the starting of the process from the central point and it 
also follows that no crossing is possible and that the pattern is simply con- 
nected. 

Some examples of the structures generated by computer studies of this 
stochastic model in a plane are shown in Fig. lb, c, d. They are self-similar 
random fractals with a well-defined Hausdorff dimension D that explicitly 
depends on the exponent r/ used in Eq. (3.1). The dimensionality is defined 
by the slope in a log-log plot, of the total number of bonds (belonging to the 
pattern) within a certain radius as a function of the radius itself. The limit 
r /=  0 gives D = 2 in analogy with the Eden model. ~8~ The limit of large r/is 
difficult to study numerically because the structure has little ramification and 
a huge starting grid would be necessary for a good statistics. 
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The above model can be extended in a natural way to describe other 
types of stochastic growth phenomena such as, for example, the propagation 
of fracture lines in a solid. ~5~ In this case the equilibrium equation for the 
elastic body is different from the Laplace equation but it is still of elliptic 
type. The nature of the boundary value problem that defines the probability 
field for further growth is therefore rather similar. In this case the stochastic 
nature of the process is related to the distribution of points of weak 
resistance in the material. 

4. RELATION TO THE MODEL OF DIFFUSION-LIMITED 
AGGREGATION 

In this section we discuss the relations of the present model with the 
diffusion-limited aggregation (DLA). In particular we will show that in the 
continuum limit our model with 1/= 1 and the DLA model coincide. No 
simple relation can be found instead for the case where r/4: 1. 

The DLA model was introduced in 1981 by Witten and Sander ~ and it 
has been object of extensive studies since then. (~~ The model simulates 
random growth by starting a seed particle at the origin of a lattice. Another 
particle is allowed to random walk from a distant lattice point until it 
reaches a site that is nearest to the seed lattice site; it is then halted and 
another one is started from far away and allowed to walk until it can attach 
to the previous two particles and so on. This model is a natural starting 
point for a description of nonequilibrium aggregation. 

The dynamics of a random walk on a lattice can be described by a 
master equation 

F -1 dPi'k(t)=--4Pi,k(t)+ ~. pi,,~,(t) (4.1) 
dt (n,n) 

Here for simplicity we have considered a two-dimensional square lattice but 
the extension to other cases is trivial. In equation (4.1)pi,k(t) represents the 
probability (or the average occupation density for the case of many 
particles) to find the particle at the site with coordinates (i, k) at time t. The 
jump rate is indicated by F and the sum runs over the nearest neighbors of 
the site (i, k). 

It is clear that the right side of Eq. (4.1) is identical to the discretized 
Laplace operator applied to p. The stationary solutions st Pi,k will correspond 
therefore to the potential ~b of (3.2): 

at = o ( 4 . 2 )  

_4p~t k+  ~ ,  st Pt',k' = 0 (4.3)  
(n,n) 
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The boundary conditions of the electric problem can be interpreted in the 
following sense: O = 1 on a far away circle corresponds to a continuous 
source of particles on this circle with st _ P~,k - 1; ~ = 0 on the growing structure 
implies instead that this structure is a sink for the diffusing particles with 

s t  Pi,k = 0. The field Oi,k at a given point of the lattice corresponds to the 
average occupation of this point in a stationary diffusion process with source 
and sink defined by the above boundary value problem. The condition 
dp/dt = 0 is therefore exact for DLA and not just an approximation valid in 
certain limits as discussed by Witten and Sander. "1) (Our p here is u of 
Ref. 11). In the case of the DLA model the probability field for the 
stationary diffusion process (average occupation of the sites nearest to the 
growing pattern) is not computed explicitly but it is directly probed by the 
random walk of a single particle. In our case we compute the potential field 
(or occupation density) explicitly and then we construct a probability field 
that is not necessarily identical to it (r/4: 1). The final probability field is 
then probed by a random number generator. 

It is clear therefore that there is a one-to-one correspondence between 
our model with r /=  1 and the DLA model, although the interpretation is 
different: bond model for dielectric breakdown against site model for DLA, 
An important remark should be made at this point concerning how the DLA 
model is actually realized in the computer simulations. The diffusing particle 
is stopped when it reaches a site that is nearest to the available pattern. This 
corresponds to our model only in the continuum limit. In fact to have a 
proper correspondence also for the discrete case one should continue the 
random walk until it is actually absorbed by the pattern and then add to the 
pattern the last step of this walk. This would be the correct way to probe the 
probability field described by Eq. (4.3). The difference between the two 
processes is, of course, expected to be negligible when the size of the object 
becomes substantially larger than the lattice spacing. 

A question one may consider is then whether our cases with r/4:1 have 
an analogy in terms of random walk models. Since in DLA the probability 
field is never constructed explicitly this relation is not easy to see. All one 
can do in the DLA is to change the dimensionality of the walk and use for 
example walks with different dimension like the self-avoiding walk or others 
instead of a simple random walk with dimension D w = 2. This would 
completely change the master equation (4.1) and it is hard to see at the 
moment any relation between the dimension of the walk used in a DLA 
process and our parameter r/. 
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